报告题目:Prediction, Computation, and Representation---The Nature of Machine Learning
主 讲 人:张志华北京大学数学科学学院教授
报告时间:2020年11月25日上午10:00-11:00
报告地址:腾讯会议ID:214329667
摘要:机器学习的发展给统计学带来了深刻的影响。Leo Breiman 在他发表于2001年的著名论文“Statistical Modeling: The Two Cultures”中首次讨论了统计学和机器学习之间的文化差异,提出了统计学专注“Data Modeling Culture”,而定义机器学习为“Algorithmic Modeling Culture”。在这个报告中,我试图用“prediction, computation, and representation”三元素来阐述机器学习的本质。特别地,从“representation”角度来看待机器学习,表明它的发展贯穿着如何解决“dimensionality curse”和利用“dimensionality blessing”。深度学习则完美诠释了这两者之间的权衡,它也是迄今为止把“Data Modeling Culture”和“Algorithmic Modeling Culture”融为一体的最佳技术途径。
主讲人简介:张志华,北京大学数学科学学院教授。之前曾经先后任教于浙江大学和上海交通大学,任聘计算机科学教授。主要从事应用统计、机器学习与人工智能领域的研究和教学。是国际机器学习旗舰刊物Journal of Machine Learning Research的执行编委,并多次受邀担任国际人工智能顶级学术会议的高级程序委员或领域主席。讲授有网络公开课《统计机器学习》、《机器学习导论》、《应用数学基础》和《强化学习》等。
邀请人:李梁